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Abstract— This paper proposes a novel shift-sum decoding
method for non-binary cyclic codes, which only requires finite
field operations but yields advanced decoding performance.
Using the cyclically different minimum-weight dual codewords
(MWDCs) and their proper shifts, a frequency matrix can be
obtained as a reliability metric for identifying the error positions
and magnitudes. By analyzing the statistical distributions of
the matrix entries, the rationale for the shift-sum decoding’s
advanced error-correction capability is revealed. Based on this
decoding method, a hard-decision iterative shift-sum (HISS)
decoding algorithm is first proposed. It can correct errors beyond
half of the code’s minimum Hamming distance. By further
utilizing the reliability information obtained from the channel,
a soft-decision iterative shift-sum (SISS) decoding algorithm is
then proposed to improve the decoding performance. Both the
HISS and the SISS algorithms are realized only with polynomial
multiplications and numerical comparisons, which are hardware-
friendly. To further improve the error-correction performance,
the HISS and SISS algorithms can be integrated in a Chase
decoding mechanism for handling the test-vectors. Simulation
results on Reed-Solomon (RS) and non-binary BCH (NB-BCH)
codes show that the proposed algorithms yield a competent
decoding and complexity performances in comparison with the
existing decoding algorithms.

Index Terms— Iterative decoding, minimum-weight dual code-
words, non-binary cyclic codes, shift-sum decoding.

I. INTRODUCTION

CYCLIC codes, including Reed-Solomon (RS) codes and
Bose-Chaudhuri-Hocquenghem (BCH) codes, are widely

used for data transmission due to their algebraic structure
which results in efficient encoding and decoding algorithms
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[3]. In particular, their encoding can be implemented by a
linear shift register circuit. For practical systems, syndrome
based decoding is applied, including the Berlekamp-Massey
(BM) algorithm [4], [5] and the extended Euclidean algorithm
[6]. These can correct errors up to half of the code’s min-
imum Hamming distance. Interpolation based algebraic list
decoding, or the so-called Guruswami-Sudan (GS) algorithm
[7], can correct errors beyond this limit with a polynomial-
time complexity. The decoding performance can be further
enhanced by the algebraic soft-decision (ASD) decoding,
or the so-called Kötter-Vardy (KV) algorithm [8]. By utilizing
the BM decoding output, Wu further proposed an improved
list decoding algorithm for both RS and BCH codes [9],
which exhibits a lower complexity than the GS algorithm.
However, in comparison to syndrome based decoding, the
complexity of interpolation based decoding remains high, lim-
iting its practical applications. Utilizing the soft information
obtained from the channel, Chase decoding [10], information
set decoding [11] and ordered statistics decoding (OSD) [12]
generate multiple decoding trials, yielding an enhanced decod-
ing performance but with a complexity that is exponential in
nature. Furthermore, integrating the KV algorithm into the
Chase decoding of RS codes was proposed in [13] and [14] to
reduce the decoding complexity. Recently, a low-complexity
Chase decoding utilizing the basis reduction interpolation
was introduced to reduce the decoding latency [15]. In [16],
a syndrome based fast Chase decoding was proposed to reduce
the decoding complexity from the Gröbner basis perspective.
Based on the statistical distribution of the distance from code-
word estimates to the received information, several stopping
and discarding rules were presented to facilitate the OSD
algorithm [17].

Belief propagation (BP) is an efficient decoder with good
performance for low-density parity-check (LDPC) codes [18].
However, its error-correction ability falls short when decoding
cyclic codes since the parity-check matrix contains too many
short cycles. To alleviate the impact of short cycles, the
adaptive BP (ABP) algorithm [19], [20], [21] first performs
Gaussian elimination (GE) on the binary parity-check matrix,
eliminating some of the short cycles. This limits the prop-
agation of unreliable information during the BP iterations.
The ABP algorithm can help improve the reliability of the
received information. Algebraic decoding algorithms, e.g., the
BM or the KV algorithms, utilize this improved information
to produce an enhanced decoding performance. Recently,
the perturbation with scheduling [22] and the concatenation
with single parity-check codes [23] were proposed to fur-
ther improve the performance of the above mentioned ABP
algorithms. However, the GE process cannot be conducted

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 25,2024 at 01:57:56 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9238-7892
https://orcid.org/0000-0002-3827-9065
https://orcid.org/0000-0002-1725-1901
https://orcid.org/0000-0002-5928-359X


XING et al.: SHIFT-SUM DECODING OF NON-BINARY CYCLIC CODES 981

in parallel, resulting in a high decoding latency. In order to
overcome this challenge, Halford and Chugg [24] proposed a
random redundant iterative decoding by utilizing a redundant
parity-check matrix and its permutation groups, while Hehn
et al. [25] introduced the multiple-bases BP (MBBP) algorithm
which utilizes several parity-check matrices for parallel BP
decoding. Integrating the above two approaches, Dimnik and
Be’ery [26] further presented an improved random redun-
dant iterative decoding, exhibiting a near maximum-likelihood
(ML) decoding performance for short cyclic codes.

In [27], minimum-weight dual codewords (MWDCs) are
utilized for decoding linear codes to correct errors beyond
half of the minimum Hamming distance bound. This idea has
also been applied to decode Reed-Muller (RM) codes, showing
that near-ML decoding performance can be achieved [28].
In [29], a novel concept of shift-sum decoding for binary cyclic
codes was proposed. It utilizes a number of cyclically different
MWDCs and their proper shifts to generate a reliability
measure which can be considered as the fundamental metric
for various decoding algorithms. The shift-sum decoding pro-
cess only requires polynomial multiplications and numerical
operations, which is of practical interest. It also allows the
information set decoding of BCH codes to achieve the ML
decoding performance [30]. Recently, the cyclic property was
also explored in [31] and [32] to construct a neural list decoder
for BCH and punctured RM codes.

In this paper, we generalize the idea of [29] to the non-
binary case, which is also motivated by its application to
channels suffering from burst errors. The main contributions
of this work are summarized as follows:

1) The shift-sum operation for non-binary cyclic codes is
first proposed. It utilizes a number of cyclically different
MWDCs and their cyclic shifts. Each of them can produce
a syndrome polynomial whose coefficients indicate the
positions of errors (up to a cyclic shift) and their mag-
nitudes (up to a multiplication by scalar). By counting
the number of different coefficients at each position,
a frequency matrix is formulated to identify the erroneous
positions and their magnitudes.

2) The plausibility analysis of the shift-sum operation is
presented. It looks into the statistical distribution of
the frequency matrix’s entries. They are categorized
into four cases with characterizations of the probabil-
ity and expectation of their occurrence. It reveals the
rationale for the shift-sum decoding’s advanced error-
correction capability. Its application to binary cyclic
codes improves the recent results of expectation char-
acterization in [30] and matches with the numerical
results.

3) Based on the above analysis, a hard-decision iterative
shift-sum (HISS) algorithm is proposed. Further utilizing
the received soft information, a soft-decision iterative
shift-sum (SISS) algorithm is also introduced to improve
the decoding performance. The two decoding algorithms
only require polynomial multiplications, additions and
comparisons, presenting a hardware-friendly operation

nature. The HISS and SISS algorithms are further inte-
grated into the Chase decoding to yield an improved
error-correction performance.

4) Simulation results for classical non-binary cyclic codes,
including RS and non-binary BCH (NB-BCH) codes,
show that the HISS and the SISS algorithms perform
better than the bounded minimum-distance decoding [4],
[5], and Chase decoding substantiated by the HISS and
the SISS algorithms can significantly outperform the ASD
algorithm [8]. It is also shown that for RS codes, the HISS
algorithm achieves the same decoding performance as the
GS algorithm [7], demonstrating its capability in correct-
ing errors beyond half of the code’s minimum Hamming
distance. Complexity analysis shows the advantage of
the proposed algorithms over two interpolation based
decoding algorithms, namely, Kötter’s interpolation [33]
and the basis reduction interpolation [34]. It is also
worthwhile to mention that so far, decoding of NB-BCH
codes has been sparsely reported in literature. This work
also provides some new performance insights for the
codes.

The rest of this paper is organized as follows. Section II
provides some preliminaries for non-binary cyclic codes.
Section III describes non-binary shift-sum decoding.
Section IV presents a plausibility analysis of the shift-sum
decoding. Section V introduces the proposed HISS and SISS
algorithms, together with their Chase-decoding based variants.
Comprehensive simulation results and complexity analysis
are presented in Section VI, followed by our conclusions in
Section VII.

II. BACKGROUND KNOWLEDGE

This section presents the definition of cyclic codes and its
encoding process. Let Fq = {σ0, σ1, . . . , σq−1} denote a finite
field of size q with a primitive element α, where σ0 designates
the zero element. Let Fq[x] denote the univariate polynomial
ring defined over Fq . For simplicity, we only consider codes
defined over finite fields of characteristic two with length n =
2s− 1, where s ∈ Z+. Let C(2p; n, k, d) denote a cyclic code
defined over F2p with length n, dimension k and the minimum
Hamming distance d, where p = 1, 2, . . . , s. Note that when
p = 1, C is a binary BCH code; when p = s, C is an RS code;
otherwise, C is an NB-BCH code. Its dual code is denoted as
C⊥(2p; n, n− k, d⊥). Let

c = (c0, c1, . . . , cn−1) ∈ C(2p; n, k, d) (1)

denote a codeword, which can also be written as a polynomial

c(x) = c0 + c1x + · · ·+ cn−1x
n−1, (2)

where cj ∈ F2p ,∀j. In the following, both representations
will be interchangeably used to denote the same codeword.
Note that for any codeword c(x) ∈ C(2p; n, k, d) and any dual
codeword c⊥(x) ∈ C⊥(2p; n, n− k, d⊥), we have

c(x)c⊥(x) = 0 mod (xn − 1). (3)
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The support of c (or c(x)) is defined as

sup(c) = sup(c(x)) = {j | cj ̸= 0,∀j}. (4)

The weight of c (or c(x)) is

wt(c) = wt(c(x)) = | sup(c(x))|. (5)

Given a dual codeword c⊥(x) ∈ C⊥(2p; n, n − k, d⊥),
it is called a minimum-weight dual codeword (MWDC) if
wt(c⊥(x))) = d⊥.

Definition 1: For any two codewords c1(x) and c2(x)
of C(2p; n, k, d), they are cyclically different if c2(x) ̸=
αjc1(x)x−h mod (xn − 1),∀j, h ∈ Z2. Otherwise, they are
cyclically equivalent.

Encoding of cyclic codes can be realized by its generator
polynomial g(x), where g(x) ∈ F2p [x]. Given a message
polynomial

f(x) = f0 + f1x + · · ·+ fk−1x
k−1 (6)

and f(x) ∈ F2p [x], the corresponding codeword polynomial
c(x) is generated by

c(x) = f(x)g(x). (7)

In this paper, two classical non-binary cyclic codes are consid-
ered, namely, RS codes and NB-BCH codes. Their generator
polynomials are described as follows.

For an RS code C(2s; n, k, dRS), where dRS = n − k + 1,
its generator polynomial gRS(x) is defined as

gRS(x) =
dRS−1∏
j=1

(x− αj). (8)

Its dual code is also an RS code C⊥(2s; n, n− k, d⊥RS), where
d⊥RS = k + 1.

NB-BCH codes can be regarded as the sub-field sub-codes
of RS codes [3]. Let the cyclotomic cosets be Kj = {j ·
(2p)i mod n, i = 0, 1, . . . , s

p − 1}. It can be seen that for
j1, j2 ∈ {0, 1, . . . , n−1}, either Kj1 = Kj2 or Kj1∩Kj2 = ∅.
The cardinality of Kj satisfies |Kj | ≤ s

p and |K0| = 1. The
generator polynomial gNB-BCH(x) is defined by

gNB-BCH(x) =
∏
i∈K

(x− αi), (9)

where K is a union set of several distinct cosets Kj and
gNB-BCH(x) ∈ F2p [x]. The NB-BCH code has length n =
2s − 1, dimension k = n − deg gNB-BCH(x) and its designed
minimum distance is dNB-BCH if gNB-BCH(x) has dNB-BCH −
1 consecutive roots over F2s . With different choices of K,
we can construct different NB-BCH codes with different
parameters and properties.

III. THE SHIFT-SUM OPERATION

This section proposes the shift-sum operation for decoding
non-binary cyclic codes. It utilizes a number of cyclically
different MWDCs to create a frequency matrix for determining
the error positions and their magnitudes.

Let E = {e1, e2, . . . , eτ} denote a set of τ error positions
and its complementary set is Ec = {0, 1, . . . , n − 1}\E . Let

εei further denote the error magnitude at position ei, where
εei ∈ F2p\{0} and i = 1, 2, . . . , τ . The error polynomial can
be written as

ε(x) = εe1x
e1 + εe2x

e2 + · · ·+ εeτ
xeτ . (10)

Therefore, as a result of transmitting a codeword c(x) ∈ C
over a channel, we receive at its output

r(x) = c(x) + ε(x)

= r0 + r1x + · · ·+ rn−1x
n−1. (11)

Let

β(x) = βb1x
b1 + βb2x

b2 + · · ·+ βb
d⊥

xb
d⊥ (12)

denote a codeword polynomial of dual code C⊥(2p; n, n −
k, d⊥). Based on Section II, it is an MWDC. The support of
this polynomial is sup(β(x)) = {b1, b2, . . . , bd⊥}. Since the
dual code is also linear and cyclic, we can assume w.l.o.g. that
βb1 = 1 and b1 = 0, i.e.,

β(x) = 1 + βb2x
b2 + · · ·+ βb

d⊥
xb

d⊥ . (13)

Since

c(x)β(x) = 0 mod (xn − 1), (14)

the syndrome polynomial w(x) that is associated with the
received word polynomial r(x) is defined as

w(x) = r(x)β(x)
= (c(x) + ε(x))β(x)
= ε(x)β(x) mod (xn − 1). (15)

The polynomial w(x) can also be written as in (16), shown
at the bottom of the next page, where the exponents are
calculated mod n. It can be seen that w(x) breaks down
into d⊥ cyclically equivalent error polynomials. Any non-zero
coefficient of w(x) is an error at its original position or a
scalar error at its shifted position. Multiplying w(x) by x−h

βh
,

we can restore the h-th such polynomial to its original form
ε(x), where h ∈ {b1, b2, b3, . . . , bd⊥} denotes the shift. As a
result, d⊥ syndrome polynomials

wh(x) =
x−h

βh
w(x) (17)

can be obtained. Note that w0(x) = w(x) and h ∈ sup(β(x)).
Assume there are L cyclically different MWDCs in C⊥,

which are written as

β(ℓ)(x) = 1 + β
(ℓ)
b2

xb2 + · · ·+ β
(ℓ)
b

d⊥
xb

d⊥ , (18)

where ℓ = 1, 2, . . . , L. Similar to (15), each of them can
produce a syndrome polynomial w(ℓ)(x) as

w(ℓ)(x) = r(x)β(ℓ)(x)

= ε(x)β(ℓ)(x) mod (xn − 1). (19)

With d⊥ cyclic shifts of all β(ℓ)(x), Ld⊥ syndrome polyno-
mials can be generated by

w
(ℓ)
h (x) =

x−h

β
(ℓ)
h

r(x)β(ℓ)(x) mod (xn − 1)

= w
(ℓ)
h,0 + w

(ℓ)
h,1x + · · ·+ w

(ℓ)
h,n−1x

n−1, (20)
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where h ∈ sup(β(ℓ)(x)). Note that for each ℓ ∈ {1, 2, . . . , L},
h ∈ sup(β(ℓ)(x)) and j ∈ {0, 1, . . . , n − 1}, the coefficient
w

(ℓ)
h,j is determined by

w
(ℓ)
h,j =

1

β
(ℓ)
h

∑
u∈sup(β(ℓ)(x))

β(ℓ)
u r(j+h−u) mod n. (21)

Based on (16), it is realized that the value of w
(ℓ)
h,j can be

regarded as an indicator for the error position and its mag-
nitude. In order to characterize the value of w

(ℓ)
h,j , we further

introduce function T (ℓ, i, j, h) as

T (ℓ, i, j, h) =

{
1, if w

(ℓ)
h,j = σi,

0, otherwise,
(22)

where i = 0, 1, . . . , 2p − 1. The main idea is to be based on
w

(ℓ)
h,j and on the frequency count of each element σi at position

j. This frequency is denoted by

ϕi,j =
L∑

ℓ=1

∑
h∈sup(β(ℓ)(x))

T (ℓ, i, j, h), (23)

which is a statistical measure over all Ld⊥ syndrome polyno-
mials. Note that the summation is performed over the integer
domain. Since cyclic shifts and summations of T (ℓ, i, j, h)
play such a central part in the proposed decoding method,
it is named the shift-sum operation. Let Φ further denote the
frequency matrix with entry ϕi,j as

Φ =


ϕ0,0 ϕ0,1 · · · ϕ0,n−1

ϕ1,0 ϕ1,1 · · · ϕ1,n−1

...
...

. . .
...

ϕ2p−1,0 ϕ2p−1,1 · · · ϕ2p−1,n−1

 . (24)

Note that for each column j ∈ {0, 1, . . . , n− 1} of Φ,

2p−1∑
i=0

ϕi,j = Ld⊥. (25)

Entry ϕi,j can be categorized into two classes, i.e., {ϕ0,j ,∀j}
and {ϕi,j ,∀j|i ̸= 0}. On one hand, ϕ0,j can be regarded as
an indicator to determine whether rj is erroneous. A smaller
value of ϕ0,j means that rj is more likely to be erroneous.
Alternatively, due to (25), a larger value of ϕi,j (i ̸= 0)
also indicates rj is erroneous with an error magnitude of
σi. Therefore, ϕi,j can be considered as a reliability metric
for identifying the error positions and magnitudes. This is
an important observation that will be used in the iterative
decoding introduced in Section V. The following example
demonstrates the property of ϕi,j .

Example 1: Given an RS code C(8; 7, 3, 5),1 assume code-
word polynomial c(x) = α6 + α4x + α4x2 + α3x3 + α6x5 +
α3x6 is transmitted and the received polynomial is r(x) =
α6 + α5x + α4x2 + α3x3 + α3x6. There are five cyclically
different MWDCs in C⊥, whose polynomial expressions are

β(1)(x) = 1 + αx + α5x2 + α2x6,

β(2)(x) = 1 + x + x3 + x6,

β(3)(x) = 1 + α2x2 + α5x3 + αx6,

β(4)(x) = 1 + α2x + α4x2 + α3x5,

β(5)(x) = 1 + α3x2 + α5x4 + α6x6.

For ℓ = 1, the coefficients w
(ℓ)
h,j are listed as follows.

• h = 0 : w
(1)
0,0 = α,w

(1)
0,1 = 1, w

(1)
0,2 = α,w

(1)
0,3 =

α5, w
(1)
0,4 = α,w

(1)
0,5 = α6, w

(1)
0,6 = 1.

• h = 1 : w
(1)
1,0 = α6, w

(1)
1,1 = 1, w

(1)
1,2 = α4, w

(1)
1,3 =

1, w
(1)
1,4 = α5, w

(1)
1,5 = α6, w

(1)
1,6 = 1.

• h = 2 : w
(1)
2,0 = α3, w

(1)
2,1 = 1, w

(1)
2,2 = α3, w

(1)
2,3 =

α,w
(1)
2,4 = α2, w

(1)
2,5 = α3, w

(1)
2,6 = α2.

• h = 6 : w
(1)
6,0 = α5, w

(1)
6,1 = α6, w

(1)
6,2 = α5, w

(1)
6,3 =

α6, w
(1)
6,4 = α3, w

(1)
6,5 = α6, w

(1)
6,6 = α4.

Similarly, for ℓ = 2, the coefficients w
(ℓ)
h,j are listed as follows.

• h = 0 : w
(1)
0,0 = 1, w

(1)
0,1 = α2, w

(1)
0,2 = 1, w

(1)
0,3 = 0, w

(1)
0,4 =

α2, w
(1)
0,5 = α6, w

(1)
0,6 = α6.

• h = 1 : w
(1)
1,0 = α2, w

(1)
1,1 = 1, w

(1)
1,2 = 0, w

(1)
1,3 =

α2, w
(1)
1,4 = α6, w

(1)
1,5 = α6, w

(1)
1,6 = 1.

• h = 3 : w
(1)
3,0 = 0, w

(1)
3,1 = α2, w

(1)
3,2 = α6, w

(1)
3,3 =

α6, w
(1)
3,4 = 1, w

(1)
3,5 = α2, w

(1)
3,6 = 1.

• h = 6 : w
(1)
6,0 = α6, w

(1)
6,1 = 1, w

(1)
6,2 = α2, w

(1)
6,3 =

1, w
(1)
6,4 = 0, w

(1)
6,5 = α2, w

(1)
6,6 = α6.

For the remaining three MWDC polynomials, the coefficients
w

(ℓ)
h,j can also be determined through the same process. After

performing the shift-sum operations over all the MWDC
polynomials, the following frequency matrix is obtained as

Φ =



5 1 4 4 5 1 4
3 10 2 2 1 1 5
2 1 3 2 2 1 1
3 1 1 1 2 2 2
1 2 4 4 3 2 2
2 2 2 2 2 10 2
1 2 3 2 3 1 2
3 1 1 3 2 2 2


.

1It is assumed that F8 is defined by the primitive polynomial
α3 + α + 1. Moreover, let F8 = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7} =
{0, 1, α, α3, α2, α6, α4, α5}.

w(x) = ε(x) + βb2x
b2ε(x) + · · ·+ βb

d⊥
xb

d⊥ ε(x) mod (xn − 1)

= εe1x
e1 + εe2x

e2 + · · ·+ εeτ
xeτ +

βb2εe1x
e1+b2 + βb2εe2x

e2+b2 + · · ·+ βb2εeτ
xeτ+b2+

...

βb
d⊥

εe1x
e1+b

d⊥ + βb
d⊥

εe2x
e2+b

d⊥ + · · ·+ βb
d⊥

εeτ
xeτ+b

d⊥ , (16)
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Note that
∑7

i=0 ϕi,j = Ld⊥ = 20,∀j. It can be observed
that ϕ1,1 = 10 and ϕ5,5 = 10, which are the largest values.
Therefore, we can consider symbols r1 and r5 are more
likely to be erroneous. The corresponding error magnitudes
are σ1 = 1 and σ5 = α6, respectively. Consequently, the error
polynomial is ε(x) = x + α6x5. The codeword polynomial
can be recovered by c(x) = r(x)− ε(x). Furthermore, it can
be seen that ϕ0,1 and ϕ0,5 are smaller than the rest of the
entries in the first row. This also implies that r1 and r5 are
more likely to be the erroneous symbols. □

IV. PLAUSIBILITY ANALYSIS

This section provides the plausibility analysis of the pro-
posed shift-sum operation, which looks into the statistical
distribution of the frequency matrix’s entries. In particular,
given τ errors, the expectation of ϕi,j at the erroneous
and non-erroneous positions are characterized. We will first
conduct this analysis on non-binary codes, followed by its
simplification to binary case. This analysis improves the results
given in [30].

A. Non-Binary Codes

Since each of the syndrome polynomials wℓ
h(x) contributes

equally to the frequency matrix, we will simply notate them
as w(x) =

∑n−1
j=0 wjx

j in the following analysis. Moreover,
we write out ε(x) as ε(x) =

∑n−1
j=0 εjx

j . Based on (15) and
(16), its coefficient wj can be written as

wj = εj + βb2εj−b2 + βb3εj−b3 + · · ·+ βb
d⊥

εj−b
d⊥

, (26)

where the subscripts of ε are calculated mod n. The plausi-
bility analysis aims to determine the probability of wj being
εj when j ∈ E , and the probability of wj being zero when
j ∈ Ec.

Let ξm ∈ F2p\{0} for m ∈ Z+. We define At as the
probability of

∑t
m=1 ξm being nonzero, i.e.,

At ≜ Pr
( t∑

m=1

ξm ̸= 0
)
, (27)

where t ∈ Z+. Note that the summation of ξm is performed
over F2p . The following lemma characterizes At.

Lemma 1: Suppose ξm is uniformly drawn from F2p\{0}.
For t ∈ Z+, we have

At = 1− 1
2p

+
1
2p

( 1
2p − 1

)t−1(−1)t−1. (28)

Proof: If
∑t

m=1 ξm = 0, based on ξt+1 ̸= 0,
∑t+1

m=1 ξm ̸=
0. This means that Pr(

∑t+1
m=1 ξm ̸= 0|

∑t
m=1 ξm = 0) = 1.

Otherwise, if
∑t

m=1 ξm ̸= 0,
∑t+1

m=1 ξm = 0 if and only
if

∑t
m=1 ξm = −ξt+1. Since ξt+1 is uniformly drawn from

F2p\{0}, Pr(
∑t+1

m=1 ξm ̸= 0|
∑t

m=1 ξm ̸= 0) = 2p−2
2p−1 . There-

fore, based on the law of total probability, the relationship

between At and At+1 is

At+1

≜ Pr
( t+1∑

m=1

ξm ̸= 0
)

= Pr
( t+1∑

m=1

ξm ̸= 0
∣∣∣ t∑

m=1

ξm = 0
)
· Pr

( t∑
m=1

ξm = 0
)
+

Pr
( t+1∑

m=1

ξm ̸= 0
∣∣∣ t∑

m=1

ξm ̸= 0
)
· Pr

( t∑
m=1

ξm ̸= 0
)

= (1−At) +
2p − 2
2p − 1

At.

The above equation can be manipulated as

At+1 −
2p − 1

2p
= − 1

2p − 1
(
At −

2p − 1
2p

)
.

Hence, {At− 2p−1
2p ,∀t} forms a geometric sequence. With the

initial condition of A1 = 1, we can obtain (28).
Based on (22) and (23), frequency matrix entries ϕi,j can

be categorized into the following four cases based on their
positions and the corresponding values. The probability and
expectation of these cases occurring are analyzed accordingly.
During the analysis, error magnitude εem

is assumed to be
uniformly drawn from F2p\{0}, where m = 1, 2, . . . , τ .

Case 1: Let j ∈ E and wj = εj ̸= 0. In this
case, for the erroneous positions j, wj = εj , and hence∑d⊥

m=2 βbm
εj−bm

= 0. The probability of this event occurring
is analyzed as follows. Suppose there exist t (at most τ − 1)
nonzero values among εj−b2 , εj−b3 , . . . , εj−b

d⊥
. The other

τ − 1 − t nonzero values would appear in the remaining εj .
They do not affect the value wj . Since βbm ̸= 0, there exist
t nonzero values βbm

εj−bm
in the summation, which are also

uniformly drawn from F2p\{0}. Based on Lemma 1, the sum
of probabilities of εj−bm

’s, for which the weighted sum is
nonzero, i.e.,

∑d⊥

m=2 βbmεj−bm ̸= 0, are At

(
d⊥−1

t

)(
n−d⊥

τ−1−t

)
.

Since one error has occurred at position j, the remaining
τ − 1 errors should appear at the other n − 1 positions,
resulting in

(
n−1
τ−1

)
possibilities. Consequently, the probability

of Case 1 occurring is

P1(τ) = 1−
∑τ−1

t=1 At

(
d⊥−1

t

)(
n−d⊥

τ−1−t

)(
n−1
τ−1

) , (29)

where t ≤ d⊥ − 1 and τ − 1− t ≤ n− d⊥. Ranging over all
MWDCs and their cyclic shifts, the expectation of ϕi,j is

E1[ϕi,j |τ ] = Ld⊥ · P1(τ), (30)

where j ∈ E and i = argi′{σi′ = εj}.
Case 2: Let j ∈ E and wj ̸= εj . In this case, for the erro-

neous positions j, wj ̸= εj , and hence
∑d⊥

m=2 βbm
εj−bm

̸= 0.
Since wj ∈ F2p\{εj}, similar to Case 1, the probability of
Case 2 occurring is

P2(τ) =
1

2p − 1
·
∑τ−1

t=1 At

(
d⊥−1

t

)(
n−d⊥

τ−1−t

)(
n−1
τ−1

) , (31)
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Fig. 1. Plausibility analysis of the non-binary codes.

where t ≤ d⊥ − 1 and τ − 1 − t ≤ n − d⊥. Therefore, the
expectation of ϕi,j is

E2[ϕi,j |τ ] = Ld⊥ · P2(τ), (32)

where j ∈ E and i ∈ {i′ | σi′ ̸= εj}.
Case 3: Let j ∈ Ec and wj = 0. In this case,

for the non-erroneous positions j, wj = 0, and hence∑d⊥

m=2 βbmεj−bm = 0. Note that in this case, εj = 0.
Assume that there are t (at most τ ) nonzero values among
εj−b2 , εj−b3 , . . . , εj−b

d⊥
. Based on Lemma 1, the sum of

probabilities of εj−bm
for

∑d⊥

m=2 βbm
εj−bm

being nonzero
are At

(
d⊥−1

t

)(
n−d⊥

τ−t

)
. Meanwhile, τ errors should occur at

the remaining n−1 positions, resulting in
(
n−1

τ

)
possibilities.

Therefore, the probability of Case 3 occurring is

P3(τ) = 1−
∑τ

t=1 At

(
d⊥−1

t

)(
n−d⊥

τ−t

)(
n−1

τ

) , (33)

where t ≤ d⊥ − 1 and τ − t ≤ n − d⊥. Consequently, the
expectation of ϕi,j is

E3[ϕi,j |τ ] = Ld⊥ · P3(τ), (34)

where j ∈ Ec and i = 0.
Case 4: Let j ∈ Ec and wj ̸= 0. In this case,

for the non-erroneous positions j, wj ̸= 0, and hence∑d⊥

m=2 βbm
εj−bm

̸= 0. Since wj ∈ F2p\{0}, the probability
of Case 4 occurring is

P4(τ) =
1

2p − 1
·
∑τ

t=1 At

(
d⊥−1

t

)(
n−d⊥

τ−t

)(
n−1

τ

) , (35)

where t ≤ d⊥−1 and τ− t ≤ n−d⊥. Finally, the expectation
of ϕi,j is

E4[ϕi,j |τ ] = Ld⊥ · P4(τ), (36)

where j ∈ Ec and i ̸= 0.
Example 2 Continuing from Example 1, we know E =

{1, 5} and Ec = {0, 2, 3, 4, 6}. Therefore, ϕ1,1 and ϕ5,5 are
categorized in Case 1, while {ϕi,1|∀i}\ϕ1,1 and {ϕi,5|∀i}\ϕ5,5

are categorized in Case 2. Similarly, ϕ0,0, ϕ0,2, ϕ0,3, ϕ0,4 and

ϕ0,6 are categorized in Case 3, while the remaining elements
are categorized in Case 4.

Remark 1: For Case 1 and Case 2, we have

P1(τ) + (2p − 1)P2(τ) = 1 (37)

and

E1[ϕi,j |τ ] + (2p − 1)E2[ϕi,j |τ ] = Ld⊥. (38)

While for Case 3 and Case 4,

P3(τ) + (2p − 1)P4(τ) = 1 (39)

and

E3[ϕi,j |τ ] + (2p − 1)E4[ϕi,j |τ ] = Ld⊥. (40)

Both (38) and (40) vindicate the conclusion of (25).
Fig. 1 shows plausibility analysis of two non-binary cyclic

codes, the RS code C(16; 15, 5, 11) and the NB-BCH code
C(4; 63, 27, 21). Their dual codes are RS code C(16; 15, 10, 6)
and NB-BCH code C(4; 63, 36, 14), respectively. The analyt-
ical results are compared with the average values (AV) that
were obtained through simulations by running 10 000 decod-
ing events for each τ . These average values are denoted as
AV1[ϕi,j |τ ], AV2[ϕi,j |τ ], AV3[ϕi,j |τ ] and AV4[ϕi,j |τ ] for the
four cases, respectively. Note that we have used 335 and
180 cyclically different MWDCs for the RS and NB-BCH
codes, respectively. It can be seen that our characterizations on
the expectations of ϕi,j match well with the simulation results.
The discrepancy between E1[ϕi,j |τ ] and E2[ϕi,j |τ ] yields the
capability on distinguishing the most likely error magnitude
and the other elements at the erroneous positions. Similarly,
the discrepancy between E3[ϕi,j |τ ] and E4[ϕi,j |τ ] yields the
capability on determining the non-erroneous positions. Fig. 1
shows that for the RS code, when 1 ≤ τ ≤ 7, E1[ϕi,j |τ ] >
E2[ϕi,j |τ ] and E3[ϕi,j |τ ] > E4[ϕi,j |τ ]. While for the NB-BCH
code, this property holds for the region of 1 ≤ τ ≤ 13. These
results reveal that even when the number of errors is greater
than half of the code’s minimum Hamming distance, it is
still possible to utilize ϕi,j to identify the erroneous positions
and further correct the errors. This observation vindicates
the shift-sum decoding’s advanced error-correction capability.
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On the other hand, the discrepancy between E1[ϕi,j |τ ] and
E2[ϕi,j |τ ] (or E3[ϕi,j |τ ] and E4[ϕi,j |τ ]) is very large for a
small number of errors. It guarantees errors to be corrected
since the erroneous positions can be determined uniquely.
In the opposite, the discrepancy reduces as the number of
errors increases, making it less confident to identify the error
positions. An iterative shift-sum decoding would be necessary,
in which the most likely errors can first be corrected. By iter-
atively reducing the number of errors in the received word
polynomial r(x), the discrepancy will increase again. The
shift-sum decoding is then capable to correct errors beyond the
above half distance bound. This leads to the iterative shift-sum
decoding which will be described in the next section.

B. Binary Codes

We now apply the above analysis to the case of binary cyclic
codes. For this case, the error polynomial is

ε(x) =
n−1∑
j=0

εjx
j , (41)

where εj = 1 if j ∈ E and εj = 0 if j ∈ Ec. Meanwhile,
the dual codeword polynomial of (13) with weight d⊥ can be
simplified into

β(x) = 1 + xb2 + · · ·+ xb
d⊥ . (42)

Therefore, coefficients of the syndrome polynomial w(x)
become

wj = εj + εj−b2 + · · ·+ εj−b
d⊥

, (43)

where the subscripts of ε are calculated mod n and wj is
either 0 or 1.

Recently, a plausibility analysis of the shift-sum decoding
for binary BCH codes has been presented in [30]. Given τ
errors, the expectation of wt(w(x)) is

E[wt(w(x))] =
n

∑τ
t=1,t is odd

(
d⊥

t

)(
n−d⊥

τ−t

)(
n
τ

) , (44)

where t ≤ d⊥ and τ−t ≤ n − d⊥. Let ϕe and ϕc denote the
frequency of one among all coefficients wj for j ∈ E and
j ∈ Ec, respectively. Their expectation can be determined by
[30]

E0[ϕe|τ ] =
E[wt(w(x))]

τ
L (45)

and

E0[ϕc|τ ] =
(d⊥ − 1) · E[wt(w(x))]

n− τ
L, (46)

respectively. However, as Fig. 2 shows, these characterizations
deviate from the simulation results as τ increases. The accu-
racy can be improved by degenerating the above non-binary
analysis to the binary case. Note that in case of binary codes,
the definitions of ϕe and ϕc are equivalent to Case 1 and
Case 4, respectively.

Corollary 2: For binary codes, i.e., p = 1, At = 1 if t is
odd while At = 0 if t is even.

Fig. 2. Plausibility analysis of the BCH code C(2; 63, 24, 15).

Therefore, when j ∈ E and σi = wj = 1, (30) is simplified
to

E1[ϕe|τ ] ≜ E1[ϕi,j |τ ]

= Ld⊥ ·
(
1−

∑
t is odd

(
d⊥−1

t

)(
n−d⊥

τ−1−t

)(
n−1
τ−1

) )
. (47)

When j ∈ Ec and σi = wj = 1, (36) becomes

E4[ϕc|τ ] ≜ E4[ϕi,j |τ ] = Ld⊥ ·
(∑

t is odd

(
d⊥−1

t

)(
n−d⊥

τ−t

)(
n−1

τ

) )
.

(48)

Fig. 2 shows the plausibility analysis of the binary BCH
code C(2; 63, 24, 15), whose dual code is also a BCH code
C(2; 63, 39, 8). There are L = 35 cyclically different MWDCs
with d⊥ = 8. The average values of ϕe and ϕc, denoted as
AV[ϕe|τ ] and AV[ϕc|τ ], respectively, were obtained through
running 10 000 decoding events for each τ . It can be seen
that E0[ϕe|τ ] and E0[ϕc|τ ] deviate from the empirical results
as τ increases. This is because the plausibility analysis of
[30] is reached based on a coarse estimation of the weight of
w(x). Instead of directly computing wt(w(x)), our analysis
derives the expectation of coefficient wj being nonzero for
erroneous and non-erroneous positions, respectively. There-
fore, our characterizations of E1[ϕe|τ ] and E4[ϕc|τ ] match well
with the simulated AV[ϕe|τ ] and AV[ϕc|τ ], respectively. These
characteristics improve over the results of [30], i.e., E0[ϕe|τ ]
and E0[ϕc|τ ].

V. ITERATIVE SHIFT-SUM DECODING ALGORITHMS

This section first proposes two iterative decoding algorithms
based on the above shift-sum method. They are the HISS
and the SISS algorithms. By further integrating into the
Chase decoding, the HISS or SISS algorithms can be utilized
to decode the test-vectors, resulting in an enhanced error-
correction capability.

A. The HISS Algorithm

The shift-sum decoding yields a reliability measure by mul-
tiplying the MWDCs and their cyclic shifts with the received
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word polynomial r(x), and further counting the frequency of
the coefficients at each position. This measure can be utilized
to determine the error positions and magnitudes so as to update
r(x) and reduce its containing errors. This process will be
iteratively performed until a codeword is found (the errors in
r(x) have been removed), or the maximum iteration number
Imax is reached.

With the above mentioned shift-sum decoding, the reliability
measures ϕi,j can be obtained. Since σ0 = 0, w

(ℓ)
h,j =

σ0 indicates position j is correct and vice versa. Based on (25),
a smaller ϕ0,j implies a larger

∑2p−1
i=1 ϕi,j , which implies that

the original errors and the shifted scalar multiples are likely
to occur at position j. Therefore, rj is more likely to be a
corrupted symbol. The HISS algorithm will iteratively modify
r(x) by determining the possible error positions and magni-
tudes at each iteration. At the beginning, ϕ0,0, ϕ0,1, . . . , ϕ0,n−1

are sorted in an ascending order, yielding a new sequence
j
(1)
0 , j

(1)
1 , . . . , j

(1)
n−1 such that

ϕ
0,j

(1)
0
≤ ϕ

0,j
(1)
1
≤ · · · ≤ ϕ

0,j
(1)
n−1

. (49)

Secondly, let φj = max{ϕi,j | i = 1, 2, . . . , 2p − 1} and
γj = σmj

, where mj = arg maxi{ϕi,j | ∀i, i ̸= 0}. Note that
a larger φj also indicates that position j is more likely to be
erroneous and γj would be the corresponding error magnitude.
By sorting φ0, φ1, . . . , φn−1 in a descending order, we can
obtain another sequence j

(2)
0 , j

(2)
1 , . . . , j

(2)
n−1 such that

φ
j
(2)
0
≥ φ

j
(2)
1
≥ · · · ≥ φ

j
(2)
n−1

. (50)

By introducing λ as a positive integer, the following two
index sets can be defined as Λ(1) = {j(1)

0 , j
(1)
1 , . . . , j

(1)
λ−1} and

Λ(2) = {j(2)
0 , j

(2)
1 , . . . , j

(2)
λ−1}. Further let Λ = Λ(1) ∩ Λ(2)

denote the index set of the updated positions in r(x). The
received polynomial r(x) is iteratively updated as

r(x)← r(x)− γ(x), (51)

where

γ(x) =
∑
j∈Λ

σmj x
j ∈ F2p(x) (52)

is the corresponding updated polynomial. Since λ ≥ |Λ|, λ
can be regarded as an upper bound on the number of updated
positions of r(x) in one iteration. If r(x) ∈ C(2p; n, k, d),
a codeword is found,2 and the HISS algorithm will terminate
and output r(x). Otherwise, the shift-sum decoding will be
performed to recalculate ϕi,j and determine the newly updated
polynomial γ(x). The decoding continues until a codeword is
found or the maximum iteration number Imax is reached. The
HISS algorithm is summarized in Algorithm 1, where r(x) is
first checked to see whether it is a valid codeword before the
iterative decoding.

Remark 2: The HISS algorithm requires only polynomial
multiplications and integer comparisons, which is of prac-
tical interest. Note that the HISS algorithm exhibits some
similarities to the symbol flipping decoding of non-binary
LDPC codes [35], as they both reach parity-check conditions

2If r(x)β(ℓ)(x) = 0 mod (xn − 1) for any ℓ, r(x) ∈ C(2p; n, k, d).

Algorithm 1 The HISS Algorithm

Input: r(x), β(ℓ)(x) for ℓ = 1, 2, . . . , L, Imax, λ;
Output: r(x) ∈ C(2p; n, k, d) or a decoding failure;

1: If r(x) ∈ C(2p; n, k, d), terminate and output r(x);
2: For I = 1 to Imax
3: Initialize ϕi,j = 0,∀(i, j);
4: For ℓ = 1 to L
5: For j = 0 to n− 1
6: For h ∈ sup(β(ℓ)(x)) do
7: Determine w

(ℓ)
h,j as in (21);

8: Determine ϕi,j as in (22) (23);
9: End For

10: End For
11: End For
12: Determine Λ and γ(x) as in (52);
13: Update r(x)← r(x)− γ(x);
14: If r(x) ∈ C(2p; n, k, d), terminate and output r(x);
15: End For
16: Return decoding failure.

for the iterative decoding. In particular, the HISS algorithm
utilizes Λ(1) and Λ(2) to identify the updated positions and
their corresponding magnitudes, while the symbol flipping
algorithm determines the updated positions based on the
extrinsic information that is calculated from the parity-check
equations.

B. The SISS Algorithm

With codeword c = (c0, c1, . . . , cn−1) being transmitted, let
r = (r0, r1, . . . , rn−1) ∈ Rn denote the received symbol vector.
By assuming Pr(cj = σi) = 1

2p , an a posteriori probability
(APP) matrix Π ∈ R2p×n can be observed, where its entries
are denoted as

πi,j = Pr(cj = σi | rj), (53)

where 0 ≤ i ≤ 2p − 1 and 0 ≤ j ≤ n − 1. Note that∑
i πi,j = 1,∀j. Let πI

j = max{πi,j .∀i}. The reliability of
each hard-decision received symbol rj can be defined as

ωj =
πI

j

1− πI
j

. (54)

For the HISS algorithm, coefficient w
(ℓ)
h,j contributes 1 to the

frequency matrix as (22) shows, limiting the error-correction
performance. The SISS algorithm aims to utilize the soft infor-
mation obtained from the channel to enhance the decoding
performance, in which an improved weight is determined for
w

(ℓ)
h,j . Inspired by the BP decoding of LDPC codes [18], we can

utilize the soft information of received symbols rj which are
involved in computing w

(ℓ)
h,j . Based on (21), the value of w

(ℓ)
h,j

depends on r(j+h−u) mod n,∀u ∈ sup(β(ℓ)(x)). Rather than
setting it to 1 as in the HISS algorithm, we can define the
contribution of w

(ℓ)
h,j to the frequency matrix as

ζ
(ℓ)
h,j = min

u∈sup(β(ℓ)(x))
j ̸=(j+h−u) mod n

ω(j+h−u) mod n, (55)
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where j ̸= (j+h−u) mod n means that the soft information
of rj is not considered for the weight. Note that it can be
simplified into h ̸= u. The definition of ζ

(ℓ)
h,j can be regarded

as the extrinsic information of w
(ℓ)
h,j obtained from the ℓ-th

MWDC and its h-th cyclic shift. With the MWDCs β(ℓ)(x),
the frequency metrics ϕi,j can again be determined as in (23),
where its function T (ℓ, i, j, h) is redefined as

T (ℓ, i, j, h) =

{
ζ
(ℓ)
h,j , if w

(ℓ)
h,j = σi,

0, otherwise.
(56)

Note that all of ϕi,j are real number. Similar to the HISS
algorithm, the SISS algorithm determines the updated set
Λ and the updated polynomial γ(x) so as to refine the
received word polynomial r(x) iteratively. With the modifi-
cation of T (ℓ, i, j, h) as shown in (56), the SISS algorithm
can determine the erroneous positions and magnitudes more
precisely, yielding a significantly improved decoding per-
formance. We will discuss more on this in the section of
simulation results.

Remark 3: Similar to the HISS algorithm, the SISS
algorithm is realized with polynomial multiplications and real
number comparisons, which is also hardware-friendly.

C. Chase Decoding

In order to further improve the decoding performance,
Chase decoding [10] can be employed, in which the
above mentioned HISS or SISS algorithm is utilized to
decode the test-vectors. Based on matrix Π, let mI

j =
arg maxi{πij} and mII

j = arg maxi,i ̸=mI
j
{πij}, the two most

likely decisions for rj are

rI
j = σmI

j
and rII

j = σmII
j
. (57)

Sort the reliability ωj of (54) in a descending order, yielding
a new symbol index sequence j0, j1, . . . , jn−1. It indicates

ωj0 ≥ ωj1 ≥ · · · ≥ ωjn−1 . (58)

The decision on rj is more reliable if ωj is greater,
and vice versa. By identifying η unreliable symbols, the
reliable symbol index set Θ = {j0, j1, . . . , jn−η−1} can
be defined. Subsequently, its complementary set Θc =
{jn−η, jn−η+1, . . . , jn−1} contains the index of the unreliable
symbols, and |Θc| = η. Two decisions can be chosen for each
of the η unreliable symbols. Consequently, 2η test-vectors can
be formulated, which are denoted by

rv = (r(v)
j0

, r
(v)
j1

, . . . , r
(v)
jn−η−1

, r
(v)
jn−η

, . . . , r
(v)
jn−1

), (59)

where v = 1, 2, . . . , 2η and

r
(v)
j =

{
rI
j , if j ∈ Θ,

rI
j or rII

j , if j ∈ Θc.
(60)

For each test-vector rv , the proposed HISS or SISS algorithm
can be utilized to decode. Since all test-vectors can be decoded
in parallel, this Chase decoding not only yields an improved
error-correction performance, but also maintains a low decod-
ing latency. Note that if the decoding yields multiple codeword
candidates, the one whose modulated symbol sequence has

the minimum Euclidean distance to r will be chosen as the
output. Substantiated by the HISS and the SISS algorithms,
these two Chase decoding are further named as the CHISS
and the CSISS algorithms, respectively.

Remark 4: In order to ensure the accuracy of the deter-
mined erroneous positions and magnitudes, a sufficient number
of cyclically different MWDCs are needed. In this paper,
we utilize the Lee-Brickell algorithm [36] to formulate a
heuristic search of the MWDCs as follows. By randomly
generating an error vector ε of weight less than or equal
to d⊥, the Lee-Brickell algorithm seeks a codeword whose
Hamming distance to ε is minimal. If a nonzero codeword
is found, we check whether its weight is d⊥ and whether it
is cyclically different from the earlier found codewords. The
process continues until a sufficient number of the cyclically
different MWDCs are found. However, except for the RS
codes, the number of cyclically different MWDCs for most of
cyclic codes is unknown. Given an RS code C(2s; n, k, dRS),
it has [37]

LRS =
1
n

∑
j|GCD(n−k−1,n)

φ̃(j)
(

n/j

(n− k − 1)/j

)
(61)

cyclically different MWDCs, where φ̃(·) is the Euler’s totient
function and GCD(n−k− 1, n) denotes the greatest common
divisor (GCD) between n − k − 1 and n. To the best of
our knowledge, a systematic and efficient construction of all
cyclically different MWDCs is yet to be developed.

VI. SIMULATION RESULTS

This section presents the simulation results of the proposed
algorithms over three conventional channels, i.e., the memo-
ryless Q-ary symmetric channel, the additive white Gaussian
noise (AWGN) channel and the Rayleigh fading channel. The
latter two cases use the binary phase-shift keying (BPSK) mod-
ulation. The HISS and the SISS algorithms with a maximum
iteration number of Imax are denoted as HISS (Imax) and SISS
(Imax), respectively. For each iteration, the maximum number
of updated positions is set as λ = ⌊d

4⌋. Moreover, the CHISS
and the CSISS algorithms are denoted as CHISS (Imax, η)
and CSISS (Imax, η), respectively, where η is the number
of unreliable symbols. Note that as we have pointed out by
Remark 4, finding the cyclically different MWDCs remains
heuristic for most cyclic codes. This would be even more
challenging for long codes. Hence, we have only simulated
short codes to demonstrate the decoding effectiveness of the
proposed algorithms. In the following discussions, the coding
gains are evaluated at the decoding frame error rate (FER)
of 10−4.

A. Memoryless Q-Ary Symmetric Channel

The Q-ary symmetric channel with an error probability of ρ
is defined by taking a Q-ary symbol as its input and outputting
either the unchanged input symbol with a probability of 1−ρ
or one of the other Q− 1 symbols with a probability of ρ

Q−1 .
During the simulations, we use Q = 2p. For this channel,
the performance of the HISS algorithm can be obtained in
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Fig. 3. Decoding performance of the HISS algorithm over the Q-ary symmetric channel.

Fig. 4. Plausibility results of the non-binary codes over the AWGN channel.

a semi-analytical manner. Let M(τ) denote the number of
simulated events with τ errors and F (τ) denote the number of
decoding failures among M(τ) events. With this information,
the decoding FER can be determined by3

FER(ρ) =
n∑

τ=1

F (τ)
M(τ)

(
n

τ

)
ρτ (1− ρ)n−τ . (62)

Fig. 3 shows the HISS decoding performance of the RS code
C(16; 15, 5, 11) and the NB-BCH code C(4; 63, 27, 21) with
Imax = 10. For the RS code, the BM algorithm can correct up
to five symbol errors, while the GS algorithm can correct at
most seven symbol errors with an interpolation multiplicity
of eight [7]. For the HISS algorithm, L = 335 cyclically
different MWDCs of weight d⊥ = 6 are utilized. Note
that (61) can validate the number of all cyclically different
MWDCs for the RS code C(16; 15, 5, 11) is 335. Fig. 3(a)
shows that the HISS algorithm performs the same as the
GS algorithm, outperforming the BM algorithm by a factor
of 100 in the FER. During the GS implementation, when
the output list contained several candidates with the same

3Note that we can only simulate several important values of τ to obtain the
FER performance since the small-weight (or large-weight) errors are obviously
correctable (or uncorrectable). This can significantly reduce the simulation
time.

Hamming distance to r(x), a random one was selected. For the
NB-BCH code, the BM algorithm can correct up to ten symbol
errors. We have found 180 cyclically different MWDCs with
weight d⊥ = 14. Note that this may not be the total number
of MWDCs for the NB-BCH code C(4; 63, 27, 21). Fig. 3(b)
shows that the proposed algorithm performs better than the
BM algorithm by a factor of nearly 10. These results reveal
that the HISS algorithm can correct errors beyond half of
the code’s minimum Hamming distance, demonstrating the
advanced decoding potentials of the shift-sum decoding.

B. AWGN Channel

In this paper, cyclic codes are defined over finite fields of
characteristic two. Hence, each codeword symbol cj can be
represented by its binary form as (cj,0, cj,1, . . . , cj,p−1) ∈ Fp

2,
where j = 0, 1, . . . , n − 1. Assume they are transmitted
over an AWGN channel with two-sided power spectral den-
sity N0/2 using BPSK modulation. The signal-to-noise ratio
(SNR) is defined as Eb/N0, where Eb is the transmitted energy
per information bit.

Fig. 4 shows the numerical results on the statistical distri-
bution of the frequency matrix’s entries ϕi,j over the AWGN
channel. It can be seen that as Eb/N0 increases, the discrep-
ancy between AV1[ϕi,j |τ ] and AV2[ϕi,j |τ ] (or AV3[ϕi,j |τ ]
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Fig. 5. Decoding performance of the HISS and the SISS algorithms over the AWGN channel.

Fig. 6. Decoding performance of the CHISS and the CSISS algorithms over the AWGN channel.

and AV4[ϕi,j |τ ]) also increases for both the RS and the NB-
BCH codes. This is due to the number of errors is small
when the SNR is high. Although a theoretical plausibility
analysis remains impossible, these empirical results vindicate
the proposed shift-sum based decoding algorithms can correct
errors over the AWGN channel.

Fig. 5(a) shows the decoding performance of the HISS and
the SISS algorithms for the RS code C(16; 15, 5, 11). The ML
decoding upper and lower bounds [38], denoted as MLUB
and MLLB, are shown for comparisons. As Imax increases,
performance of the HISS and the SISS algorithms improve,
outperforming the conventional BM algorithm. When Imax =
10, the HISS algorithm yields a coding gain of 0.9 dB over
the BM algorithm. By utilizing the soft information obtained
from the channel, the SISS algorithm outperforms its hard-
decision counterpart, exhibiting an extra 0.3 dB performance
gain. But it is still 3.1 dB away from MLUB at the FER
of 10−4. It can also be observed that the HISS (or SISS)
algorithm can achieve little gain by increasing the iteration
number beyond five. This implies that most of the errors have
been corrected within the first few iterations. Although the
MBBP decoding algorithm [25] with ten iterations performs
better than the proposed algorithms, it exhibits a significantly

higher decoding complexity which requires both floating point
operations and multiple BP decoding trials. Fig. 5(b) shows the
decoding performance of the NB-BCH code C(4; 63, 27, 21).
Again, their performance improve as Imax increases. When
Imax = 20, the HISS and the SISS algorithms can yield
0.4 dB and 1.2 dB coding gains over the BM algorithm,
respectively. By comparing Figs. 5(a) and 5(b), it can be seen
that the soft-decision decoding achieves greater coding gains
than its hard-decision counterpart for the NB-BCH code than
for the RS code. Note that the NB-BCH code is defined over
a smaller finite field. This results in the symbol reliability
metric ωj , which is a product of the corresponding bit-wise
reliabilities, being more reliable. For this code, the SISS
algorithm performs similarly as the MBBP algorithm, but with
a much lower complexity.

Fig. 6 further provides the decoding performance of the
CHISS and the CSISS algorithms. For the RS code, Fig. 6(a)
shows the CSISS algorithm with η = 2 yields a similar
error-correction capability as the ASD decoding algorithm
with an output list size l = 8 [8]. By increasing η to four,
both of the Chase decoding based algorithms perform the
same and exhibit a coding gain of 2.3 dB over the BM
algorithm. For the NB-BCH code, Fig. 6(b) shows that as
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Fig. 7. Plausibility results of the non-binary codes over the Rayleigh fading channel.

Fig. 8. Decoding performance over the Rayleigh fading channel.

η increases, the CHISS and the CSISS algorithms yield a
better decoding performance, outperforming the HISS and the
SISS algorithms as well as the BM algorithm, with significant
coding gains. However, the gap between two Chase decoding
variants becomes smaller, which is similar as the RS code.
That says Chase decoding yields a better utilization of soft
information than the SISS algorithm which only constructs the
frequency matrix Φ based on soft information. Furthermore,
considering the SISS and the CSISS algorithms with the same
total iteration number,4 the CSISS algorithm with Imax = 5 and
η = 1 outperforms the SISS algorithm with Imax = 10 for the
RS code, while the CSISS algorithm with Imax = 5 and η =
2 performs similarly as the SISS algorithm with Imax = 20 for
the NB-BCH code. Note that the CSISS decoding performance
can be further improved by increasing η but it does not hold
for the SISS algorithm by increasing Imax. This demonstrates
that the Chase decoding can yield a better trade-off between
the decoding capability and complexity.

C. Rayleigh Fading Channel

The Rayleigh fading channel is memoryless with Doppler
shift. It is a fast fading channel, in which the fading coefficients

4The total iteration number of the CSISS algorithm is defined as Imax · 2η .

are Rayleigh distributed with a mean value of 1.25 and
a variance of 0.43. During the simulations, we assumed
coherent detection, i.e., the channel state information and
the power allocation are known by both the transmitter and
receiver. Fig. 7 shows numerical results on the statistical
distribution of the frequency matrix’s entries ϕi,j over the
Rayleigh fading channel. Similar to the AWGN channel,
when Eb/N0 improves, the discrepancy between AV1[ϕi,j |τ ]
and AV2[ϕi,j |τ ] (or AV3[ϕi,j |τ ] and AV4[ϕi,j |τ ]) becomes
larger for both the RS and the NB-BCH codes. Therefore,
the proposed shift-sum based decoding algorithms can iter-
atively correct errors to recover the transmitted message.
Fig. 8 shows the decoding performance of the proposed
algorithms over the Rayleigh Fading channel. It shows that
for the RS code, the HISS and the SISS algorithms outper-
form the BM algorithm with a coding gain of 2.5 dB and
3.6 dB, respectively. While for the NB-BCH code, they can
respectively yield a gain of 0.8 dB and 2.8 dB. The Chase
decoding can further improve the performance, yielding at
most 5.8 dB for the RS code and 3.7 dB for the NB-BCH
code over the BM algorithm. Finally, it should be pointed
out that for the RS code, when η = 4, both the Chase
decoding algorithms outperform the ASD decoding algorithm
with l = 8.
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TABLE I
AVERAGE NUMBER OF ITERATIONS AND COMPLEXITY IN DECODING THE RS CODE C(16; 15, 5, 11)

TABLE II
AVERAGE NUMBER OF ITERATIONS AND COMPLEXITY IN DECODING THE NB-BCH CODE C(4; 63, 27, 21)

D. Complexity Analysis

Herein, the decoding complexity of both the HISS and
the SISS algorithms will be analyzed. It is measured by the
amount of finite field multiplications in decoding a code-
word. For each iteration, the essential computation of the
HISS algorithm is the calculation of coefficients w

(ℓ)
h,j , which

requires d⊥ multiplications. Note that n coefficients need to
be computed, and L MWDCs and their d⊥ cyclic shifted
codewords are utilized in the decoding. Hence, the decod-
ing requires Ln(d⊥)2 finite field multiplications, resulting in
an asymptotic complexity of O(Ln(d⊥)2). Considering the
maximum number of iterations Imax is needed, the worst-case
complexity would be O(ImaxLn(d⊥)2). The SISS algorithm
utilizes soft information to generate the weight of coefficient
w

(ℓ)
h,j , resulting in ϕi,j of Step 8 in Algorithm 1 being a real

value. Meanwhile, the determination of the updated positions
and magnitudes, e.g., Step 12 in Algorithm 1, is different. The
HISS algorithm performs the integer comparison, while the
SISS algorithm performs the real value comparison. However,
in terms of finite field multiplications, the SISS algorithm
exhibits the same decoding complexity as the HISS algorithm.

Table I shows the average number of iterations and com-
plexity in decoding the RS code C(16; 15, 5, 11) over the
AWGN channel. These results were obtained by running
10 000 decoding events for each Eb/N0. It can be seen
that these two algorithms yield a similar convergence on the

average iteration number. As Eb/N0 increases, the average
number decreases, as a valid codeword is more likely to be
produced at an earlier stage. When Eb/N0 ≥ 8 dB, the
average iteration number is less than one. This is because
some of the received word is already a valid codeword without
incurring the decoding. When Eb/N0 reduces, the average
iteration number still would not reach Imax since the algorithms
usually can find a valid but incorrect codeword after the
first few iterations. This also explains the reason why Fig. 5
shows that the decoding performance cannot be improved by
increasing the decoding iterations. Table I also shows the
average decoding complexity of the RS code, demonstrating
the decoding complexity decreases as the Eb/N0 increases.
For the GS decoding, it can correct seven errors with an inter-
polation multiplicity of eight. Its actual complexity depends
on the interpolation approach. The asymptotic complexity of
Kötter’s interpolation [33] is O(n2l5), where l is the maximum
output list size. Its empirical average decoding complexity is
9.72×106. When using the basis reduction interpolation [34],
the asymptotic complexity is O(n(n − k)l5). Its empirical
average complexity is 2.37 × 106. Therefore, the proposed
algorithms yield a lower decoding complexity.

Finally, Table II shows the average number of iterations and
complexity in decoding the NB-BCH code C(4; 63, 27, 21).
Again, it can be observed that the HISS and the SISS algo-
rithms exhibit similar average iteration number and decoding
complexity over the Eb/N0 region, and these values decrease
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with the increase of Eb/N0. Compared with Tables I and II,
we observe that when Eb/N0 is low, the average number of
iterations for decoding the NB-BCH code is much closer to
Imax than for decoding the RS code. This difference is caused
by the difference of their codebook cardinalities. For the RS
code C(16; 15, 5, 11), it has 165 = 1 048 576 codewords, while
the NB-BCH code C(4; 63, 27, 21) has 427 ≈ 1.80 × 1016

codewords. Therefore, it would be much easier for the iterative
decoding to find a valid RS codeword than to find a valid NB-
BCH codeword. During this research, we have noticed that
even when the SNR is low, the decoding can still find a valid
but incorrect RS codeword. This is not the case for the NB-
BCH code. Hence, when Eb/N0 is low, the NB-BCH code
needs to perform more decoding iterations than the RS code.

VII. CONCLUSION

This paper has proposed the shift-sum operation for decod-
ing non-binary cyclic codes. By multiplying a number of
MWDCs and their cyclic shifts with the received word polyno-
mial, a frequency matrix can be yielded as a reliability metric
for identifying the error positions and magnitudes. Plausibility
analysis of the shift-sum operation has been provided, which
derives the probability distributions and expectations of the
frequency matrix entries, explaining its advanced decoding
capability. The HISS and the SISS algorithms have been
further proposed to show the performance potentials of the
novel shift-sum decoding method. Moreover, they can be
realized with only polynomial multiplications and numerical
comparisons, which are friendly for practical implementation.
It should be highlighted that the HISS algorithm achieves the
same advanced decoding performance as the GS algorithm,
but yields a lower decoding complexity. To further improve
the error-correction capability, the Chase decoding algorithms
have been proposed, in which the HISS or the SISS algorithm
is utilized to decode the test-vectors, resulting in a significantly
improved decoding performance. They can also outperform the
ASD decoding algorithm. Simulation results on the RS and
the NB-BCH codes have been provided to verify the decod-
ing performance and complexity advantages of the proposed
decoding approaches.
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